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1. More Details
1.1. Occlusion-aware Noise Suppression

Algorithm 1 presents the details of the depth dilation adopted in the proposed Occlusion-aware Noise Suppression. Fig-
ure S1 shows visualization examples of the depth dilation process. Owing to the sparsity of the point cloud, the warped
RGB and depth images are often sparse, and background points may leak through foreground gaps, resulting in unreliable
conditioning. To address this, we dynamically dilate the depth map based on image density, filtering out such interfering
points, and these regions are then compensated by the low-resolution warping results, producing dense conditioning. It is
worth noting that most edge regions are also filtered out. We consider this reasonable, since the depth predictions from the
pretrained estimator are relatively unreliable near object boundaries.
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Figure S1. Visualization of the occlusion-aware noise suppression.
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Algorithm 1 Occlusion-aware Depth Dilation
Input: Warped depth map Dwarp
Output: Updated depth map Dout
Other parameters: M denotes the valid mask of Dwarp; p denotes a pixel in Dwarp; τD denotes the depth threshold; kmax

and kmin denote the maximum and minimum kernel sizes.

1: Compute valid-pixel density: ρ = 1
HW

∑
p M(p)

2: Determine dilation kernel size: k(ρ) = kmax − (kmax − kmin)ρ
3: Mask invalid pixels with +∞:

D̂(p) =

{
Dwarp(p), M(p) = 1

+∞, M(p) = 0

4: Apply min-pooling with kernel size k(ρ): Ddilate = −MaxPool
(
− D̂; k(ρ)

)
5: Identify invalid or penetrated pixels: U = {p | M(p) = 0 ∨ (Dwarp(p)−Ddilate(p) > τD)}
6: Update depth map:

Dout(p) =

{
Ddilate(p), p ∈ U
Dwarp(p), otherwise

7: return Dout

1.2. The Easy and Hard Set Division on DL3DV-Benchmark

We divide the DL3DV-Benchmark into easy and hard subsets following the protocol of ViewCrafter, which separates them
based on the frame sampling stride. Building upon the implementation of DepthSplat, we adopt two configurations by setting
the interval between the first and last video frames to 50 and 100, respectively. A larger frame sampling stride corresponds
to faster camera motion and greater viewpoint changes, which we therefore refer to as the hard setting. Figure S2 illustrates
an example of the easy and hard splits for a scene. The first row corresponds to the easy set, and the second row corresponds
to the hard set. The leftmost and rightmost images denote the reference views, while the middle images show the point cloud
projections for regular novel view synthesis.

Frame index: 1 13 25 37 50

Frame index: 1 25 49 77 100

Figure S2. An example of easy and hard sets of DL3DV-Benchmark. The first row corresponds to the easy set, and the second row
corresponds to the hard set. The leftmost and rightmost images denote the reference views, while the middle images show the point cloud
projections for regular novel view synthesis.

1.3. Computational Overhead

Table S1 summarizes the time and GPU memory costs for each inference stage, measure on a single NVIDIA A100 GPU
with 80 GB of memory. Our model generates 25 images in a single inference pass and consists of several stages. First, a
DDIM sampling is performed to generate multi-view images. Next, these images are fused using global consistency fusion



to obtain the global structure context. This global structure context is then used to guide the diffusion model for a second
inference, producing the final diffusion outputs. Finally, 3DGS optimization is applied for 3D reconstruction.

Table S1. Computational overhead of each inference stage.

Stage Inference stage 1 Global structure fusion Inference stage 2 3DGS optimization Total

Processing time (seconds) 121 2 126 30 279
Peak GPU memory (G) 43.2 - 45.2 2.1 -

2. More Ablation Studies
2.1. Effect of Decoder Finetune

Table S2 presents ablation results: the first two columns show the performance of combining the baseline with decoder
finetuning, while the last two columns report our method with and without decoder finetuning. From these comparisons,
we observe that decoder finetuning consistently improves PSNR by about 1 dB. However, this improvement mainly comes
from better texture learning, and it cannot fundamentally correct structural errors. As illustrated in Figure S3, the baseline
method suffers from structural mistakes (e.g., errors at the top of buildings or in the faces of sculptures), whereas our method
generates more plausible results, with or without decoder finetuning. This further validates the effectiveness of our proposed
module. Therefore, the role of decoder finetuning is to enhance texture quality rather than rectify structural inaccuracies.

Table S2. The effect of decoder finetune.

Method PSNR↑ SSIM↑ LPIPS↓
Baseline 17.60 0.555 0.413

+ Decoder finetune 18.69 0.600 0.379
Ours w/o Decoder finetune 18.75 0.618 0.369

+ Decoder finetune 19.66 0.643 0.346

Baseline Baseline with Dec. FT Ours w/o Dec. FT Ours with Dec. FT Ground Truth

Figure S3. The effect of decoder finetune (Dec. FT).

2.2. Chosen of Hyper-parameters

We set τD = 0.2 by default in all the experiments. Figure S4 (a) shows the effect of τD in the proposed occlusion-aware
noise suppression. A smaller value means more pixels will be filtered out, which may include some useful ones, while a
larger value fails to effectively remove noisy pixels.

In addition, we conduct ablation studies on the three hyperparameters, τnum, τg, τc, used in the global structure guidance
module. Since our video diffusion model generates 25 frames, we set τnum = 10 by default. The other two parameters, τg
and τc, are set to 0.01 and 0.1, respectively. As shown in Fig. S4 (b), a larger τnum indicates a stricter consistency constraint,
while smaller values of τg and τc enforce stricter evaluations, leading to better results. More importantly, varying these



hyper-parameters has only a minor impact on the quality of diffusion-generated results (with a maximum PSNR difference
of about 0.04), demonstrating the robustness of our method.
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(b) Effect of hyper-parameteres used in global structure guidance

Figure S4. Effect of Hyper-parameteres. (a) shows effect of the threshold τD in noise suppression, while (b) presents the effect of τnum,
τg , τc used in global structure guidance.

2.3. Soft Pixel Confidence in 3DGS Optimization

We further conduct an additional experiment on pixel confidence, comparing the soft confidence approach with the hard
confidence used in the main paper. Specifically, we compute the pixel-level confidence as the ratio of valid correspondences
(passing the consistency check) over the total correspondences. As shown in the Table S3, the difference between the two
confidence strategies is marginal. This is likely because the regions with the largest differences between the hard and soft
schemes, typically areas with low overlap or along object boundaries, are rarely observed during 3DGS optimization and are
inherently less reliable.

Table S3. Ablation of pixel confidence in 3DGS optimization.

Method Close-up View Original View

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
Pixel confidence (Hard) 19.80 0.637 0.391 20.33 0.656 0.371
Pixel confidence (Soft) 19.81 0.636 0.391 20.34 0.656 0.372

2.4. Soft Number Threshold in Global Structure Guidance

To further evaluate the impact of the number threshold, we introduce a soft threshold based on the ratio of valid correspon-
dences over the total correspondences, where the soft threshold is set to τnum > 0.5, instead of the previous hard threshold
setting (τnum > 10) in the main paper. The average results of the two settings are reported in Table S4, showing that the
performance difference is not significant.

Table S4. Ablation of number threshold in global structure guidance.

Setting Close-up View Original View

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Hard threshold 19.61 0.608 0.358 19.93 0.602 0.360
Soft threshold 19.57 0.608 0.358 19.91 0.605 0.359



2.5. Effect of Color Consistency

Figure S5 presents a visualization example illustrating the effect of color consistency. As shown in the figure, with the
color consistency constraint, the fused point cloud exhibits improved texture quality and produces sharper, clearer images.

Without color consistency With color consistency

Figure S5. Effect of color consistency in the global structure guidance.

3. Qualitative Results on the DL3DV-Drone Dataset
Figure S6 present the qalitative comparisons on the DL3DV-Drone dataset, which shows that our reconstructions exhibit

higher fidelity to the ground truth against other method, particularly in fine-grained details. For instance, our method better
preserves the textures on the tower in the close-up view and the window appearance of the courtyard scene in regular view.
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(a) Close-up View
Point Cloud Render MVSplat360 DepthSplat ViewCrafter Ours GT

(b) Original View

Figure S6. Qualitative results of sparse-view novel view synthesis on the DL3DV-Drone dataset. We present the results of (a) close-up
view and (b) regular view synthesis, respectively. The color boxes highlight the difference among the methods for better comparison.
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